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Swirling flow of viscoelastic fluids. Part 1.
Interaction between inertia and elasticity
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A torsionally driven cavity, consisting of a fully enclosed cylinder with rotating bottom
lid, is used to examine the confined swirling flow of low-viscosity Boger fluids for
situations where inertia dominates the flow field. Flow visualization and the optical
technique of particle image velocimetry (PIV) are used to examine the effect of small
amounts of fluid elasticity on the phenomenon of vortex breakdown. Low-viscosity
Boger fluids are used which consist of dilute concentrations of high molecular weight
polyacrylamide or semi-dilute concentrations of xanthan gum in a Newtonian solvent.
The introduction of elasticity results in a 20% and 40% increase in the minimum
critical aspect ratio required for vortex breakdown to occur using polyacrylamide and
xanthan gum, respectively, at concentrations of 45 p.p.m. When the concentrations of
either polyacrylamide or xanthan gum are raised to 75 p.p.m., vortex breakdown is
entirely suppressed for the cylinder aspect ratios examined. Radial and axial velocity
measurements along the axial centreline show that the alteration in existence domain
is linked to a decrease in the magnitude of the peak in axial velocity along the central
axis. The minimum peak axial velocities along the central axis for the 75 p.p.m.
polyacrylamide and 75 p.p.m. xanthan gum Boger fluids are 67% and 86% lower
in magnitude, respectively, than for the Newtonian fluid at Reynolds number of
Re ≈ 1500–1600. This decrease in axial velocity is associated with the interaction of
elasticity in the governing boundary on the rotating base lid and/or the interaction
of extensional viscosity in areas with high velocity gradients. The low-viscosity Boger
fluids used in this study are rheologically characterized and the steady complex flow
field has well-defined boundary conditions. Therefore, the results will allow validation
of non-Newtonian constitutive models in a numerical model of a torsionally driven
cavity flow.

1. Introduction
A torsionally driven cavity produces a swirling flow field under well-defined bound-

ary conditions and provides a suitable simple geometry for numerical study of the
flow of viscoelastic fluids. In addition, swirling flow is common throughout pro-
cess engineering and therefore an understanding of the fundamental behaviour of
non-Newtonian fluids owing to swirl has industrial relevance.

A torsionally driven cavity is displayed in figure 1 and consists of a fully enclosed
cylinder in which rotation of the bottom lid produces a primary flow in the azimuthal
direction and a secondary flow in the radial and axial directions. Centrifugal or
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Figure 1. Torsionally driven cavity flow fields.

inertial forces cause the fluid to experience a force directed radially outwards along
the disk, producing a secondary flow pattern, as shown in the top left-hand corner
of figure 1. This secondary flow vortex is observed for Newtonian fluids and will be
termed ‘Newtonian-like’ flow or an ‘inertia driven vortex’. In the case of elastic fluids,
normal stresses cause the fluid to experience a force directed radially inwards along
the disk, opposing centrifugal effects, producing a secondary flow pattern as shown
in the top right-hand corner of figure 1. This secondary flow vortex is termed ‘reverse
flow’ or an ‘elastic driven vortex’. The competition between inertial and elastic effects
can produce a wide variety of complicated secondary flow fields.

The behaviour of dilute flexible and semi-rigid polymer solutions, with a constant
viscosity, in the torsionally driven cavity is investigated. Constant-viscosity elastic
liquids, commonly referred to as Boger fluids (Boger 1977/78), are used to ensure
that changes in the flow kinematics are associated purely with fluid elasticity and
cannot be confused with effects due to shear-thinning viscosity which are found in
all previous experimental work using non-Newtonian fluids in a confined swirling
flow (Hill 1972; Böhme, Rubart & Stenger 1992; Day et al. 1996; Escudier & Cullen
1996).

This paper investigates the influence of elasticity in an inertia dominated flow in
the parameter space where vortex breakdown is observed for Newtonian fluids. Part
2 (Stokes et al. 2001) investigates the transition from an inertia dominated flow to
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an elasticity dominated flow by using several flexible polymer Boger fluids of varying
elasticity levels and a semi-rigid polymer Boger fluid. The aim of the research is to
report on the influence of elasticity in a complex flow field with and without the
presence of inertia. The well-defined boundary conditions of the torsionally driven
cavity make it an ideal geometry for the testing of non-Newtonian constitutive
equations for numerical solution as a precursor to solving more difficult and complex
swirling flow problems such as those associated with mixing.

2. Previous work
The following section will review previous investigations on the flow behaviour of

both Newtonian and non-Newtonian fluids in the torsionally driven cavity.

2.1. Vortex breakdown and the confined swirling flow of Newtonian fluids

Vortex breakdown refers to the situation where a sudden transition of a vortex
flow structure occurs with an abrupt change in character. The breakdown is usually
associated with the development of a flow stagnation point and often with regions of
reversed axial flow. Vortex breakdown was reportedly first observed experimentally
as the ‘bursting’ of trailing-edge vortices from aircraft travelling at high angles of
attack by Peckham & Atkinson (1957), Elle (1960), Werlé (1960) and Lambourne &
Bryer (1961). Detailed investigations of breakdown on delta wings have been limited
by the complicated nature of the leading-edge vortex, its unsteadiness and a lack of
axial symmetry. Harvey (1962) observed vortex breakdown in a vortex tube where
air travels axially along a circular tube with the degree of swirl imparted on the
air controlled by a set of adjustable vanes. The introduction of a diverging tube by
Sarpakaya (1971) allowed the characterization of several types of breakdown forms
and, in particular, he observed the transformation between the two main types of
breakdown – asymmetric ‘spiral-type’ and axisymmetric ‘bubble-type’ – by increasing
the degree of swirl. The development of more refined experiments allowed the primary
conditions necessary for vortex breakdown to be established as a high degree of swirl,
a positive or adverse pressure gradient and a divergence of the stream tubes in the
vortex core immediately upstream of the breakdown (Hall 1972). This was investigated
further by using an enclosed cylinder with rotating endwall (Escudier 1984). In this
case, the axisymmetric geometry and well-defined boundary conditions produced a
well-posed problem, ideal for the numerical solution of the Navier–Stokes equations
(Lopez 1990).

Vortex breakdown has been widely studied over the last 40 years with the first
theories proposed by Jones (1960), Squire (1960), Ludweig (1961), and Benjamin
(1962). Detailed discussion on the mechanisms and theories governing breakdown
may be found in review articles by Hall (1972), Leibovich (1978, 1984), Escudier
(1988), and Delerey (1994). More recent discussions on the phenomena have been
made by Berger & Erlebacher (1995), Keller (1995), Rusak (1996), and Wang & Rusak
(1997). However, there is still no general consensus as to the underlying mechanism
leading to breakdown.

In the confined cylindrical swirling flow of Newtonian liquids, in which the fluid is
situated in an enclosed cylinder with rotating bottom lid (also referred to as a disk or
endwall), the rotation of the lid produces a non-uniform centrifugal force along the
base and a secondary flow in the cylinder normal to the primary flow is generated.
Here, an Ekman layer is present on the rotating lid with a thickness of the order
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Figure 2. Secondary flow patterns for a Newtonian fluid at conditions showing (a) inertia driven
vortex, (b) pre-incipient breakdown, and (c) vortex breakdown.

(1/Re)0.5 (Lopez 1990) where Re is the Reynolds number defined by:

Re =
ρ(2πΩ)R2

η
, (1)

where ρ is the density (kg m−3), Ω is the disk rotation rate (s−1), R is the disk radius
(m), and η is the viscosity (Pa s). The Ekman layer acts as a centrifugal pump by
driving the fluid outwards along the rotating base, up the sidewalls, inwards along
the stationary lid and down the central axis in a spiral motion where it is then
sucked back into the boundary layer, as depicted in figure 2(a). As the rotation rate
of the disk is increased, a widening of the vortex core near the disk is observed with
a waviness in the sectional streamline patterns as illustrated in figure 2(b). Further
increases in disk speed results in the production of a stagnation point on the central
axis and a weak recirculation zone which is characteristic of an axisymmetric vortex
breakdown bubble and shown in figure 2(c).

Vortex breakdown in an enclosed cylinder with a rotating lid was first observed
experimentally using flow-visualization techniques by Vogel (1968, 1975), Hill (1972),
and Ronnenberg (1977) for a limited range of parameter space and with only one
breakdown bubble observed. Escudier (1984) observed the formation of up to three
breakdown bubbles and produced a detailed diagram, represented in figure 3, showing
the existence domain of vortex breakdown with respect to two governing dimensionless
groups, the cylinder aspect ratio (H/R) and the Reynolds number defined in (1) where
H is defined as the cylinder height. Escudier (1984) also observed that the breakdown
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Figure 3. Existence domain of vortex breakdown for Newtonian fluids (Escudier 1984). Circular
symbols represent experimental points produced for a Newtonian fluid in the current paper.

regions were highly axisymmetric, which supported his view that vortex breakdown is
inherently axisymmetric and departures from axisymmetry are the result of instabilities
not directly associated with the breakdown process. The recirculation zone inside the
breakdown region was observed to contain low interior velocities. An oscillatory flow
regime, where the breakdown bubbles move up and down in a periodic manner,
was also observed at high Reynolds numbers (above Re ≈ 2600 for H/R > 1.8) with
vortex breakdown still highly axisymmetric. The flow was ultimately observed to
became unsteady and then turbulent with a further increase in the Reynolds number.
Fujimura, Koyama & Hyan (1997) examined the location of the stagnation points
during spin-up and spin-down of the rotating lid. He found that equilibrium after
spin-up from rest was reached after more than 25 s with conditions 1970 < Re < 2450
and H/R = 2.5.

There are only a few reports of measurements of velocity distributions in the disk
and cylinder system for Newtonian fluids. In the absence of breakdown, tangential
velocity measurements have been made by Bien & Penner (1970) and radial and
tangential velocity measurements were made by Hill (1972). Prasad & Adrian (1993)
have also demonstrated the use of the optical technique stereoscopic particle image
velocimetry (PIV) to obtain measurements of the tangential, radial and axial velocity
profiles for a Newtonian fluid at low Reynolds number. However, only a limited set of
velocity measurements have been made in the presence of breakdown by Ronnenberg
(1977) and Buchave et al. (1991).

The cylinder with rotating lid provides the simplest geometry in which vortex
breakdown is observed. This flow field is therefore ideal for numerical studies into
the vortex breakdown phenomena using the time-dependent Navier–Stokes equations.
Investigation into vortex breakdown at steady-state conditions using the numerical
solution of the axisymmetric Navier–Stokes equations has been primarily performed
by Lugt & Abboud (1987), Lopez (1990), Brown & Lopez (1990), Tsitverbilt (1993),
and Gelfgat, Bar-Yoseph & Solan (1996). In the work by Lopez (1990), the numerical
model was validated by comparing the predicted streamlines with the streaklines ob-
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Figure 4. Comparison between experimetally observed dye-lines (Escudier 1984) and numerically
predicted sectional streamline patterns (Lopez 1990) of vortex breakdown for a Newtonian fluid at
Re = 2494 and H/R = 2.5.

served from the flow-visualization images of Escudier (1984) with excellent agreement,
as shown in figure 4. Brydon & Thompson (1998) were able to accurately predict the
entire existence domain diagram of Escudier (1984).

Lopez (1990) describes the breakdown process as the result of the advection of
angular momentum towards the central axis as the fluid flows radially inwards along
the stationary lid from the corner of the sidewall at Reynolds numbers a little below
those required for breakdown (Re ≈ 1600–1800 for H/R = 2.5). Preservation of the
angular momentum causes the angular velocity to increase, and consequently an
increase in centrifugal acceleration to a local maxima results as the fluid flows axially
down in the centre of the cylinder towards the rotating lid. The stream surfaces
then deform and take on a concave shape resulting in a stationary centrifugal (or
inertial) wave, as shown in the streamlines of figure 2(b). The amplitude of the inertial
waves increases and their wavelength decreases with further increases towards the
Reynolds number required for breakdown. The associated axial deceleration is then
large enough to cause the flow to stagnate under the crest of the wave and cause an
adverse pressure gradient resulting in vortex breakdown (figure 2c).

A ratio of swirl to axial velocity has been well established as a useful criteria for
the breakdown of a vortex (e.g. Hall 1972; Delerey 1994). It indicates that when the
swirl (Vφ) is large relative to the axial velocity (Vz), a stagnation point can form, and
breakdown results. The common form of the criteria is as a swirl angle (φν) which is
stated by Hall (1972) as:

φν = tan−1

(
Vφ

Vz

)
. (2)

Hall (1972) states that the maximum value of φν upstream of breakdown is invariably
greater than 40 ◦. In the torsionally driven cavity, the numerical analysis of Lugt &
Abboud (1987) showed that Hall’s (1972) criteria were met with a value of the swirl
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angle just below the stationary lid increasing to 40 ◦ once breakdown took place for
H/R = 2.

Lopez (1990) and Brown & Lopez (1990) postulated that the recirculation zones
result from the ‘generation of negative azimuthal vorticity through the stretching
and tilting of vortex lines’ and that this is a necessary condition for the occurrence
of vortex breakdown. They also applied their theory to the swirling pipe flow and
established an alternative criteria for the occurrence of breakdown based on the
relationship between the angle of the velocity vector or swirl angle and the angle of
the vorticity vector (φω) on stream surfaces upstream of breakdown such that:

φν > φω, (3)

where φω = tan−1(ωφ/ωz) while ωφ and ωz are the azimuthal and radial components
of vorticity, respectively.

Gelfgat et al. (1996), similarly to Lopez (1990), conclude that a necessary condition
for vortex breakdown is a concave form of the stream surfaces, which may be
considered as the cause in the change in sign of the azimuthal component of vorticity.
However, Gelfgat et al. (1996) also show that vortex breakdown does not necessarily
occur when the azimuthal vorticity is negative, or when the stream surfaces are
concave in shape, by observing these conditions at low cylinder aspect ratios where
vortex breakdown does not occur at any Reynolds number.

The oscillatory instability and unsteady flow behaviour which Escudier (1984)
observed at high Reynolds number, as shown in figure 3, has been investigated by
Sørensen & Daube (1989), Lopez (1990), Lopez & Perry (1992), Liao & Young (1995),
Sørensen & Christensen (1995), and Gelfgat et al. (1996). The study of time-dependent
flows in the torsionally driven cavity flow gives an insight into the changing kinematics
of the various flow structures observed at high Reynolds number.

Related works involving the cylinder geometry include the corotation or counter-
rotation of two lids and the use of an open cylinder where a single lid is rotated
with a free surface. Roesner (1990) investigated experimentally vortex breakdown in a
cylinder with two rotating lids and found that when at incipient breakdown, corotation
of the lids resulted in breakdown while counter-rotation resulted in the disappearance
of the breakdown bubble. Numerical investigations into the two rotating lid systems
have been conducted by Valentine & Jahnke (1994), Lopez (1995), Gelfgat et al.
(1996) and Watson & Neitzel (1996). Watson & Neitzel (1996) found that the criteria
of Brown & Lopez (1990) were met at the location of the breakdown bubble in their
flow domain. However, the criteria were not met upstream of breakdown, nor at the
incipient state of breakdown, which questions the use of the criteria of Brown &
Lopez (1990) as a predictive tool. Spohn, Mory & Hopfinger (1993, 1998) examined
experimentally the secondary flow in an open cylinder with one rotating lid and found
that the conditions for vortex breakdown changed noticeably from those observed for
a closed cylinder. The differences to the closed cylinder case include: breakdown was
at a lower Reynolds number; a breakdown bubble was present even at the maximum
Reynolds number tested (Re ≈ 3500); breakdown was observed at aspect ratio as
low as H/R = 0.5; and breakdown bubbles were generally much larger in size. A
breakdown bubble attached to the free surface was also observed which cannot be
explained by classical vortex breakdown theories (e.g. Benjamin 1962; Ludweig 1961)
which assumed a cylindrical vortex core upstream of breakdown.

In summary, in the confined swirling flow of Newtonian fluids, inertia causes fluid
to be forced outwards along the rotating lid and creates a secondary flow normal
to the primary flow. In the subcritical state prior to breakdown, the divergence of
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Observation Re0 We El

Hill (1972) H/R = 1
0.016–0.52% polyacrylamide in 10–54% glycerol–water

‘reverse’ flow (6a) < 1 < 0.5 0.1–60
Unsteady flow/instability 0.1–0.4 0.3–0.5 0.7–4
Counter-rotating vortices (6b) 0.2–20 0.3–0.5 0.02–2
‘Newtonian’ flow (2a) 0.4–90 0.2–0.4 0.004–0.04

Day et al. (1996) H/R = 1.8
2.5% polyacrylamide in water

‘Reverse’ flow (6a) 0.88 0.88 1
Instability 1.57 0.94 < 0.6

Escudier & Cullen (1996) 1.5 < H/R < 2.84
0.75–1.5% carboxymethylcellulose in water or glucose–water

Counter-rotating vortices (6b) 7–174 < 0.014 < 0.002

Böhme et al. (1992) 1 < H/R < 3
0.1% carboxymethylcellulose in 60–80% glycerol–water

Vortex breakdown (2c) > 1000 — —

Table 1. Summary of previous experimental observations made using non-Newtonian fluids.
Figure numbers corresponding to the observations are given in parentheses.

axial streamlines leads to an adverse pressure gradient down the central axis and the
sectional streamline patterns form stationary inertial waves. Once a critical swirl level
for a supercritical state is reached, stagnation occurs along the central axis and the
inertial waves propagate upstream, resulting in vortex breakdown.

2.2. Confined swirling flow of non-Newtonian fluids

The confined swirling flow of non-Newtonian fluids was realized as an experimental
test case for the validation of fluid constitutive equations by Hill, Huppler & Bird
(1966). It was demonstrated that for a highly elastic and shear-thinning fluid, the
rotation of the disk generated a secondary flow field which was in the opposite
direction to that for a Newtonian fluid as a result of induced normal stresses in
the fluid. Hill (1969, 1972), Böhme et al. (1992), Day et al. (1996), Escudier &
Cullen (1996) and Wusch & Böhme (1996) have all used fluids which are highly
shear-thinning and contain varying amount of elasticity. A summary for previous
experimental observations of non-Newtonian fluids in the torsionally driven cavity is
presented in table 1.

The introduction of non-Newtonian fluids into the confined swirling flow experi-
ment creates two additional independent sets of parameters into the problem: elasticity
and shear-thinning. Shear-thinning may be represented by either a single or group
of shear-thinning parameters which may be found in numerous viscosity models (eg.
Carreau models and ‘power law’ models, see Bird, Armstrong & Hassager 1987a).
If the fluid is shear-thinning, then the Reynolds number is based on the zero-shear
rate viscosity (η0) and given the symbol Re0. Elasticity is typically represented by a
Weissenberg number (We) which is measured by evaluating the ratio of the charac-
teristic time of the fluid (eg. Maxwell relaxation time: λM and characteristic time of
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the process (eg. 1/2πΩ). The Weissenberg number may is evaluated as follows:

We = λM2πΩ. (4)

Another dimensionless number used is the elasticity number (El) which measures the
ratio of the elastic forces to the inertial forces and may be represented as follows:

El =
We

Re
=
λMη0

ρR2
. (5)

A feature of the elasticity number is that it is independent of the rotation rate of
the lid, provided the relaxation time and viscosity are constant and not shear rate
dependent.

Böhme et al. (1992) performed experiments using low concentrations (0.1%) of car-
boxymethylcellulose in glycerol–water solvents to produce two highly shear-thinning
solutions in order to investigate the effect of shear-thinning on vortex breakdown. A
shear-thinning parameter (β) which was independent of the rotation rate of the disk
was defined by:

β =
ηδ(η0 − ηz)
ρτ∗cd2

, (6)

where ηδ is the solvent viscosity, c is the polymer concentration, d is the diameter
of the disk, and τ∗ is a constant reference stress which was determined by fitting the
viscosity to a master curve. The fluids investigated had shear-thinning parameters of
β = 0.13 and β = 1.0, with β = 0 indicating a Newtonian fluid. Experiments were
performed at high Reynolds numbers where inertial dominated and the elasticity was
considered negligible, although no measurements of any elastic material properties
were presented. ‘Newtonian-like’ flow and axisymmetric vortex breakdown were ob-
served by Böhme et al. (1992) for the shear-thinning fluids. However, the existence
domain for vortex breakdown decreased in size and was shifted to higher values of
the cylinder aspect ratio as the degree of shear-thinning was increased. The resulting
vortex breakdown domain curves are shown in figure 5 for the two shear-thinning
fluids and a Newtonian fluid.

Escudier & Cullen (1996) observed the confined swirling flow of highly shear-
thinning carboxymethylcellulose solutions for concentrations of 0.75–1.5% and with
Reynolds numbers below Re = 174. The primary normal stress difference was mea-
sured, but the fluid was considered relatively inelastic because of low values in
elasticity number (El < 0.002). At all rotation rates examined, a vortex was observed
on the disk which was dominated by inertia such that the secondary flow was in
the ‘Newtonian’ direction and driven outwards along the rotating disk. However, a
counter-rotating vortex was observed in the upper portion of the flow cell which was
driven in the ‘reverse’ direction with a very slow secondary flow velocity and was near
stagnant. An upward flowing jet of fluid containing a wavy structure was also present
in several observations of Escudier & Cullen (1996) along the axis of symmetry.

A range of highly elastic shear-thinning polyacrylamide solutions (0.016–0.52%)
were used by Hill (1969, 1972), in solvents of glycerol and water, to examine the effect
of elasticity in swirling flow. ‘Reverse’ flow occurred for highly elastic liquids at low
Reynolds number where the secondary flow is inwards along the rotating lid against
centrifugal forces, upwards along the central axis away from the rotating disk and
then along the outside stationary walls, as depicted in figure 6(a). At higher levels of
Reynolds number and lower values of elasticity number, complex flow patterns were
observed where an inertially driven ‘ring’ vortex forms at the edge of the rotating disk,
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Figure 6. Secondary flow patterns observed by Hill (1972) for shear-thinning elastic liquids showing:
(a) ‘reverse’ or elasticity driven flow; (b) counter-rotating vortices with a inertia-driven ring vortex
located on the outside of the rotating lid. (a) is also predicted by Kramer & Johnson (1972) using
a second-order fluid with El = 0.5.
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counter-rotating with the main ‘reverse’ flow vortex structure, as shown in figure 6(b).
Further increases in disk speed caused the growth of the outer edge vortex and then
a highly unsteady flow. For low concentrations of polymer (0.03%), Hill (1972) also
observed that the secondary flow transformed from ‘reverse’ flow at low Reynolds
number to ‘Newtonian-like’ flow at high Reynolds number. Hill (1972) only observed
‘Newtonian-like’ flow without any apparent elastic behaviour for concentrations of
polyacrylamide of 0.015%. The tangential and radial velocities were also measured
for one highly elastic liquid in the ‘reverse’ flow state.

Day et al. (1996) used a highly elastic shear-thinning polyacrylamide solution
(2.5% in water) and observed ‘reverse’ secondary flow at low Reynolds number. On
increasing the Reynolds number, Day et al. (1996) observed the formation of a ring
vortex on the centre of the disk and an instability where the core of the main vortex
is observed to spiral with the primary motion of the fluid and is the same as the
elastic instability shown in Part 2.

Numerical methods have been used in an attempt to predict the flow patterns
observed for non-Newtonian fluids in confined swirling flow for both elastic and
inelastic fluids. The constitutive equations used by Böhme et al. (1992) and Escudier
& Cullen (1996) described inelastic fluids while those used by Kramer (1969) and
Kramer & Johnson (1972), Nirschl & Stewart (1984), and more recently by Chiao &
Chang (1990), described elastic fluids.

Böhme et al. (1992) performed a finite-element simulation and used a generalized
Newtonian model in order to model only the shear-thinning viscosity of the fluids he
used in his experiments which were mentioned previously for high-Reynolds-number
flow. Vortex breakdown was predicted numerically with reasonable accuracy, but with
some departure from the size and location of the initial breakdown bubble observed
experimentally. Böhme et al. (1992) associated the deviations between the experiments
and numerical prediction as possibly being due to the elasticity of the fluid, which
was not considered in the constitutive equation used. Escudier & Cullen (1996) used
the commercial computational fluid dynamics package ‘Polyflow’ with the shear-
thinning viscosity described using a generalized Newtonian model which did not take
into account fluid elasticity. The numerical model predicted only ‘Newtonian-like’
flow governing the whole flow cell and did not predict the counter-rotating vortices
observed in the experiments.

Kramer (1969) and Kramer & Johnson (1972) were the first to try and predict the
effect of elasticity in confined swirling flow and hence reproduce the experimental
observations made by Hill (1972). Kramer & Johnson (1972) used a perturbation
theory for a weak secondary flow superimposed on an arbitrary primary flow using
both a second-order fluid model, which assumes a constant viscosity and a constant
primary normal stress coefficient, and the WJFLMB constitutive model of Spriggs,
Huppler & Bird (1966), which assumes a power law form of material functions
but does not account for fluid memory. Figures 6(a) and 7 show the qualitative
observations made by Kramer & Johnson (1972) when they used the second-order
fluid model for constant Reynolds number and varied the normal stress coefficient,
which equated to a variation in the elasticity number of between El = 0 and El = 0.5.
As the elasticity number was increased from El = 0 to El = 0.0125, a small elastically
driven vortex formed on the outer edge of the rotating disk in an otherwise Newtonian
flow field (figure 7a). The elastic vortex then governed a majority of the flow field
with a further increase in elasticity number to El = 0.025, while only a small inertial
vortex remained on the centre of the rotating disk (figure 7b). ‘Reverse’ flow was then
predicted with an increase in elasticity number to El = 0.5 and elastic effects fully
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Figure 7. Secondary flow patterns predicted by Kramer & Johnson (1972) for a constant-viscosity
second-order fluid with (a) El = 0.0125 and (b) El = 0.025.

dominated (figure 6a). The predictions using the second-order fluid model did not
qualitatively represent the observations of Hill (1972) except for the fully ‘reverse’
flow situation, although this is not surprising considering the simplicity of the model
and its inability to represent the fluid rheology. The second-order model was also
found to be highly inaccurate when comparing the analytical velocity measurements
with those made by Hill (1972). However, the WJFLMB model, which was capable
of representing the shear rheology of the fluid such as the variation in relaxation time
and viscosity with shear rate, was found to predict the tangential and radial velocity
profiles with reasonable accuracy for the case when ‘reverse’ flow is observed at low
Reynolds number.

A global spectral method was used by Chiao & Chang (1990) while an orthogonal
collocation method was used by Nirschl & Stewart (1984) with both methods applying
the Criminale–Ericksen–Filbey (CEF) constitutive equation in an attempt to predict
the observations of Hill (1972). The CEF equation is similar to the second-order
model except that Chiao & Chang (1990) and Nirschl & Stewart (1984) use the
Carreau A model (Carreau 1968) to describe the variations of the material properties
with shear rate for the fluids of Hill (1972). Chiao & Chang (1990) found that the
CEF model had some physical limitations and was a mathematical obstacle due to
the third-order terms in the equation. Difficulties with the CEF model include its
inability to describe fluid memory, and the fact that it generally only performs well
for viscometric flows while the torsionally driven cavity produces non-viscometric
flows. Also, Tanner (1985) recommended that the CEF constitutive model should be
avoided outside of viscometric flows because its numerical predictions are prone to
convergence problems. Therefore, the CEF model is not an appropriate model to use
for predicting the behaviour of fluids in the torsionally driven cavity except for the
purpose of examining the qualitative effects of elasticity and shear-thinning.

Both Nirschl & Stewart (1984) and Chiao & Chang (1990) were able to predict
‘reverse’ flow in many of the cases where Hill (1972) observed it experimentally.
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Also, the numerical tangential and radial velocity profiles compared very well to the
measurements of Hill (1972) for a ‘reverse’ flow situation. Chiao & Chang (1990)
were able to predict a counter-rotating inertially driven vortex on the outer edge of
the disk (figure 6b) for several of the cases when it was observed experimentally by
Hill (1972). Contrary to the experiments of Hill (1972), Nirschl & Stewart (1984) did
not predict an inertial vortex on the edge of the disk. Instead, their model predicted
that an inertial vortex would form on the centre of the rotating disk, as did the model
of Kramer & Johnson (1972) at moderate values of elasticity number (figure 7b).
In addition, Chiao & Chang (1990) predicted a region of temporal instabilities and
chaotic flow which were believed to be consistent with some of the observations made
by Hill (1972) at high Reynolds number.

Wüsch & Böhme (1996) used a single-integral constitutive equation (Wagner model)
to simulate their own experimental results for a shear-thinning elastic polyacrylamide
solution. Although limited details were presented, the flow patterns were found to
be similar to those observed by Hill (1972). Wüsch & Böhme (1996) state that the
observed flow behaviour was qualitatively predicted when the Weissenberg number
was altered for a set Reynolds number.

The open cylinder with rotating bottom lid was used experimentally for a shear-
thinning elastic liquid (25% polyacrylamide (PAA) in water) and a constant-viscosity
elastic liquid (silicon oil) by Böhme, Voss & Warnecke (1985). ‘Reverse’ flow was
observed at low Reynolds number (Re < 0.013 for 2.5% PAA) and a bulge in the
free surface was produced which depended on the primary normal stress difference.
The effect was termed the Quelleffekt because the fluid flowed upwards along the
axis of symmetry as a source or Quell. Böhme et al. (1985) developed a second-order
theory assuming a sufficiently slow flow and solved it using a numerical finite-element
method. The results for the surface bulge size agreed well between experiment and
the numerical analysis. It was found that the zero-shear rate normal stress coefficients
could be determined by measuring the displacement of the free surface, and that the
surface tension of the fluid had an insignificant influence on the result. It was also
found that the axial bulge deformation was quadratic in the angular velocity of the
rotating disk for low angular velocities. Debbaut & Hocq (1992) used the Oldroyd-B
and Johnson–Segalman constitutive models to predict the bulge shape observed by
Böhme et al. (1985). Both models assume a constant-viscosity for the test fluid and
a quadratic dependence of the primary normal stress with shear rate. The second
normal stress difference is predicted to be zero for the Oldroyd-B model, but it is
quantified in the Johnson–Segalman equation such that the relative importance of the
primary and second normal stress differences on the surface bulge could be examined.
The surface bulge was found to be larger using the Oldroyd-B model, indicating that
the primary normal stress difference caused the free surface to rise while the second
normal stress difference acted against the first normal stress difference as far as the
bulge shape was concerned. Good quantitative agreement on surface displacement
was found between the predictions of Debbaut & Hocq (1992) and the experiments
by Böhme et al. (1985). However, Siginer (1991) found that surface tension was
important when measuring surface deformation to yield normal stress coefficients. In
addition, Siginer (1991) predicted sectional streamline patterns with various sets of
counter-rotating vortices observed which were dependent on the elasticity of the fluid
and cylinder aspect ratio.

All previous experimental investigations on the confined swirling flow of non-
Newtonian fluids have been performed using shear-thinning elastic liquids, although in
some cases the elasticity was considered negligible. When the relaxation time has been
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determined for the various fluids, it has also been invariably shear-rate dependent.
Both the Reynolds number and the Weissenberg number were consequently evaluated
using the zero shear-rate value of viscosity and with a shear-rate dependent relaxation
time, respectively. This is despite the fact that the lid may be rotating at substantial
rates, and that the magnitudes of the material properties vary throughout the flow
cell. Comparison between different experiments and fluids has been difficult owing to
the inability of the Reynolds number, Weissenberg number (or elasticity number) and
a shear-thinning parameter to characterize the flow field. If the fluid is shear-thinning,
then it is difficult to distinguish between the effects of shear thinning and those of
elasticity, especially when the Reynolds number is high. Consequently, it is difficult
to ascertain the role of elasticity in all of the above-mentioned observations. Also,
prediction of the flow field for non-Newtonian fluids has not been able to produce
all the observations made by Hill (1972) because of the limitations in the constitutive
equations used and/or in the rheological data presented by Hill (1972). However,
some good comparisons between experiments and numerical results were found for
the case of ‘reverse’ flow of Hill’s (1972) most elastic fluid. Numerical prediction in
confined swirling flow is possible, but there is a need for experimental results using
well-characterized fluids which can be described by more sophisticated constitutive
models than those that have been used previously.

In the present work, the effects of elasticity are isolated by examining the confined
swirling flow of a collection of constant-viscosity elastic liquids (Boger fluids) which
may be considered as ‘ideal’ fluids. This paper, Part 1, investigates the behaviour
of a set of low-viscosity Boger fluids containing up to 75 p.p.m. of either flexible
polymer (polyacrylamide) or semi-rigid polymer (xanthan gum) when the flow field is
dominated by inertia. The effect of the polymer, and hence slight fluid elasticity, on
the existence domain for vortex breakdown will be examined. Part 2 will use medium
to high-viscosity Boger fluids where the inertia is decreased until the flow field is fully
dominated by fluid elasticity and viscosity. All the fluids are well characterized such
that material functions required for various constitutive models may be determined.
In particular, the polyacrylamide Boger fluids are ideal for use in the Oldroyd-B
constitutive model because it requires a constant viscosity and a constant relaxation
time. Radial and axial velocities are measured using particle image velocimetry (PIV)
with particular emphasis placed on reporting and comparing the axial velocity profiles
along or near the axis of symmetry. It is envisaged that the results presented will be
ideal for comparison to numerical predictions in confined swirling flow and will allow
testing of constitutive models and numerical techniques for steady and unsteady flows
of viscoelastic fluids.

3. Experimental
The following section describes the confined swirling flow experiment and the

techniques used to measure and visualize the secondary flow field.

3.1. Apparatus

The experimental apparatus, as shown in figure 8 and also described by Day et
al. (1996), consisted of an acrylic cylinder with radius 70 ± 0.25 mm, situated in a
rectangular acrylic water bath, with dimensions 402×402×592 mm3, to reduce image
distortion effects. The bottom lid of the cylinder was a stainless steel disk which was
rotated using a three-phase a.c. motor via a v-belt and pulley arrangement with a
selectable reduction gearbox for the lower disk speed range. The rotation rate of
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Figure 8. Torsionally driven cavity experimental rig.

the disk was controlled using a variable frequency unit connected to the a.c. motor,
and was measured using a frequency counter with a resolution of approximately
±0.002 s−1. The stationary top lid was movable and lockable, and positioned according
to the height to radius ratio required to within ±0.5 mm. Both disk and cylinder were
designed and built to ensure axial symmetry with the disk rotating with a lateral
tolerance of ±50 µm.

Various top lids could be used which depended on the viscosity of the fluid such
that air bubble entrainment was minimized as the lids were lowered into the fluid and
set in place. A lid with one central small capillary hold (0.5 mm diameter), connected
to a needle and a 1 mm diameter tube for dye insertion, was used for fluids with
a low viscosity (η < 1.5 Pa s) and it also contained a flush mounted thermocouple.
An alternative lid with 5 small holes (1 mm diameter) arranged regularly in a line
across the lid surface was used for medium-viscosity fluids (1.5 < η < 3 Pa s). A third
lid with a central small hole (1 mm diameter) and an off-centre large diameter hole
(≈ 10 mm diameter), was used for high-viscosity fluids (η > 3 Pa s) such that once the
lid was lowered into the fluid, a large flat plug screw could be used to block the hole.
Subsequent flow measurements showed that no detectable asymmetries in the flow
field were present for any of the three lids.
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During a given experiment, the temperature of the working fluid was found to
increase owing to viscous heating, especially at high rotation rates and for viscous
liquids. Therefore, to control the heating effects, the bath water was circulated through
an Haake F3 environmental controller such that most experiments were conducted
between 20 ◦C and 21 ◦C. For the lids without a flush mounted thermocouple, a
thermocouple probe could be inserted through the capillary holes in the lids, or alter-
natively, for continual measurement it could sit in the capillary holes just outside the
flow cell. The temperature of the test fluid was regularly measured to within ±0.05 ◦C
such that the governing dimensionless numbers could be determined accurately by
taking into consideration temperature variation of the material functions.

3.2. Flow visualization

Illumination of the secondary flow plane was performed using a Coherent Highlight
argon-ion laser, operating at 0.5 W, piped through an optical fibre to a cylindrical
lens. This lens produced a multiline blue–green laser light sheet with a thickness of
1–2 mm. Dye flow visualization was conducted in order to observe ‘streaklines’ by
dissolving fluorescein powder (≈ 0.2 g l−1) into a small quantity of the test fluid. The
dye was then added via either a syringe–tube–needle arrangement in the centre of the
stationary lid for low-viscosity fluids, or by a syringe–tube–capillary arrangement in
the other lids.

Colour photography of the dye streaklines was typically performed at an exposure
of 1

4
– 1

2
s and aperture f2 to f4, using a 35 mm SLR camera with a noct-Nikkor

58 mm lens and 1BUV filter with EPP 100 ISO film. Images were slightly distorted in
the radial direction such that the equivalent radial image distance was 108% of the
actual distance at the edge of the field. Video imaging was performed using a Sony
Hi8 video camera (model DXC537P) with a zoom lens.

3.3. Particle image velocimetry

Velocity data in the secondary flow plane was obtained using the two-dimensional
optical technique of PIV (Pickering & Halliwell 1985; Adrian 1991). A similar tech-
nique, laser speckle velocimetry (LSV), has also been used previously by Binnington,
Troup & Boger (1983) to obtain velocity profiles for Boger fluids. PIV was used
in preference to the alternative measurement technique laser-Doppler anemometry
(LDA) (Durst, Lehmann & Tropea 1981) owing to the prohibitively long acquisition
periods that would be required for LDA when measuring the higher viscosity flaws
where in some cases fluid velocities were less than 1 mm s−1.

The following will briefly describe the PIV system which was based on simple
multiple exposure photography for imaging and digital autocorrelation techniques
for data processing (Adrian 1991; Meinhart, Prasad & Adrian 1993). A detailed
description of the PIV system can be found in Stokes (1998).

The PIV images were recorded using a pulsed light source from either a 12-sided
rotating mirror system as described by Gray et al. (1991) and shown in figure 9, or
a mechanical shutter with light sheet optics. In both cases a 0.5 W argon ion laser
light source was used with a fibre optic delivery and collimation lens. The flow was
seeded using fluorescent rhodamine particles. A Nikon F4 camera with a noct-Nikkor
58 mm f1.2 lens was used to record the images onto 35 mm Kodak Tmax400 (TMY)
film. The 35 mm transparencies were then digitized into 8 bit greyscale images at a
resolution of 2700 d.p.i. by using a Polaroid SprintScan 35 scanner. The processing of
images was carried out using autocorrelation and post-processing software developed
by N.J.L. The software was set up to vary the size of the d.c. peak mask in the
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Figure 9. Torsionally driven cavity experimental set-up showing rotating mirror used for PIV
studies.

correlation plane so that it was proportional to the particle image diameter (Lawson,
Coupland & Halliwell 1997).

Figure 10 shows a typical PIV image with corresponding vector map and streamline
plot. The two-dimensional PIV vector maps are measurements of velocity in the axial
and radial plane. From this data, a predictor–corrector integration algorithm in the
commercial software package of ‘Tecplot’ was used to obtain streamline traces. It
should be noted, however, that because of the three-dimensional nature of the flow
field, the streamlines in the following analysis are representative of the ‘instantaneous’
flow in the cross-plane and are termed ‘sectional streamline patterns’ (Perry & Steiner
1987).

As mentioned previously, the flow field is highly three-dimensional and contains
a strong out-of-plane component, termed the azimuthal velocity (Vθ). In the worst
case, this component will displace particles out of the light sheet between exposures
causing data dropout in the vector map. Therefore, areas near the outer surfaces and,
in particular, near the rotating disk, were found to have the greatest dropout and
only the central region near the axis of symmetry contained reliable data, where the
out-of-plane velocity component was lower. This problem was partly overcome by
recording several PIV images with different pulse separations and then combining the
sets of validated data. However, in the case where the secondary flow velocity was
the same order of magnitude as or greater than the azimuthal velocity component, the
majority of PIV vectors were obtained. Other errors were also generated around the
axis of symmetry when particles were displaced across the centre with the primary
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Figure 10. Secondary flow field for 75 p.p.m. polyacrylamide Boger fluid at Re = 2100, We = 0.7,
and H/R = 2 showing: (a) PIV image; (b) vector map; (c) sectional streamline patterns.
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flow due to either an excessive laser sheet thickness, high velocities in the primary
flow and/or misalignment of the laser sheet position.

The measured radial and axial velocities, given the symbols Vr and Vz , respectively,
are made dimensionless for comparative purposes by dividing by a characteristic
velocity. The characteristic velocity is chosen to be the maximum azimuthal velocity
(Vθ(max) = 2πΩR) in the system which is located at the edge of the rotating disk. The
coordinate system is taken as (r, θ, z) with r = 0 and z = 0 corresponding to the
centre of the rotating disk. Therefore, a positive axial velocity corresponds to the fluid
flowing upwards, vortically away from the rotating disk. The azimuthal component
of vorticity (ωθ) was determined from the measured velocity data using the following
definition:

ωθ =
∂νr

∂νz
− ∂νz

∂νr
. (7)

Components of the rate of strain tensor which could be determined are γ̇rz , γ̇zr, γ̇rr,
γ̇θθ, γ̇zz . Only γ̇zz , was used here to give an indication of the strain rate along axial
streamlines about the central axis and was defined by γ̇zz = 2∂νz/∂z.

3.4. Error analysis

For the PIV system, the velocity vector V at any grid point is calculated from a
calibrated magnification M, a particle image displacement ∆s and a pulse separation
∆t such that:

V =
∆s

M∆t
. (8)

Therefore, if the uncertainty in measurement of the quantities M, ∆s and ∆t is
represented by the percentage errors δ(M), δ(∆s) and δ(∆t), respectively, then the
total percentage error in velocity measurement, δ(V ) can be found from:

δ(V ) =
√

[δ(M)]2 + [δ(∆s)]2 + [δ(∆t)]2. (9)

The magnification M (pixels mm−1) was estimated from known image dimensions
such as the height and diameter of the flow cell, and the error was typically one pixel
in 1000 or δ(M) = 0.1%. The maximum deviation in the mirror speed was noted as
3 r.p.m. in 167 r.p.m., resulting in a maximum pulse separation error of δ(∆t) = 1.8%.
For the error in particle image displacement δ(∆s), previous work by Keane &
Adrian (1991) is used to estimate the error from a priori information on the flow. A
priori velocity information is required since the particle displacement error is strongly
dependent on spatial velocity gradients (Keane & Adrian 1991) with the worst error
occurring in the region of highest spatial gradient. From previous work (Lugt &
Abboud 1987), the maximum gradient has been predicted at the edge and towards
the centreline of the flow, and is of the order of 10 mm s−1 across a given interrogation
region of size 1.3 mm. Therefore, with a mean particle image size of 100 µm and a
magnification of M = 0.15, the error in particle displacement is estimated to be
in the range 2.5% < δ(∆s) < 19.5% for a corresponding range of pulse separations
15 ms < ∆t < 143 ms. The total error in measurement from equation (9) will then equal
3.1% < δ(V ) < 19.6%. This estimate indicates that it is desirable to keep the laser
pulse separation to a minimum owing to the errors generated by velocity gradients.
Unfortunately, at lower pulse separations the lower range of secondary flow velocities
cannot be resolved owing to insufficient particle image separations. Hence, a number
of PIV vector maps were taken for a given flow with different pulse separations and
the different sets of validated vectors combined. This technique allows the user to



86 J. R. Stokes, L. J. W. Graham, N. J. Lawson and D. V. Boger

(a)
10

0

–10

–20

–30

–40

–50

–60

–70

–80

0 20 40 60 80 100 120 140

numerical prediction
30 ms
60 ms
100 ms

Pulse time:

Axial distance, z (mm)

A
xi

al
 v

el
oc

it
y,

 V
z
(m

m
 s

–1
)

(b)
10

0

–10

–20

–30

–40

–50

–60

–70

–80

0 20 40 60 80 100 120 140

numerical result
15 ms
30 ms
60 ms

Pulse time:

Axial distance, z (mm)

A
xi

al
 v

el
oc

it
y,

 V
z
(m

m
 s

–1
)

100 ms
143 ms

Figure 11. Comparison of the axial velocity along the centreline (r ≈ 0) measured using PIV and
that predicted by Lugt & Abboud (1987) for the Newtonian solvent at (a) Re = 1000, (b) Re = 1500.

restrict the total error in measurement to δ(V ) < 10% and also permits tuning of
the data to account for the out-of-plane effects mentioned previously. Any remaining
non-valid vectors can then be interpolated and the complete map smoothed to remove
correlation noise.

A comparison is shown in figure 11 between PIV experimental measurements of
the centreline axial velocity and those predicted using the numerical model of Lugt
& Abboud (1987) for a Newtonian fluid at Reynolds numbers of Re ≈ 1000 and



Swirling flow of viscoelastic fluids. Part 1 87

Re ≈ 1500. Each plot shows axial velocities which were determined using a range of
pulse separation times of between 15 ms and 143 ms. The experimental results compare
well to the predicted measurements across the entire length of the cylinder. Deviations
of around 10% between the experimental measurements and those predicted were
found at the minimum peak in axial velocity, about which the velocity gradients
were highest. This deviation matches the level of accuracy predicted in the previous
error analysis and thus gives a sufficient degree of confidence in the technique for the
following study of centreline flow fields.

4. Rheology of test fluids
The following section includes a rheological description of the low-viscosity Boger

fluids used in this study. The material parameters for several constitutive models
are listed and a comparison is made between the measured and predicted linear
viscoelastic properties. This analysis is necessary to enable the prediction of the flow
behaviour of the fluids used in this study using numerical models.

4.1. Test fluids

The test polymers used were a commercial grade of polyacrylamide (PAA) Separan
AP30 (supplied by Dow Chemical Ltd, USA) and xanthan gum Keltrol (supplied by
Kelco, Division of Merck & Co. Inc.). Polyacrylamide (AP30) is a flexible polyelec-
trolyte molecule with an average molecular weight (Mw) reported in the literature to
be between 2× 106 and 4× 106 (Eisenbrand & Goddard 1982; Lawlar et al. 1986;
Tam & Tiu 1989a, b). Xanthan gum (Keltrol) is regarded as a semi-rigid polyelec-
trolyte molecule with a molecular weight reported to be between 2× 106 and 7× 106

(Holdzwarth 1978; Zirnsak 1995; Paradossi & Brant 1982; Norton et al. 1984; Sato,
Norisuye & Fujita 1984).

The average molecular weights of the polymers were determined using size exclusion
chromatography (SEC) with a multi-angle laser light scattering instrument (model:
DAWN F, Wyatt Technology Corp.) and a differential refractometer (model: Waters
410) used as on-line detectors. Solutions of 1 g l−1 of polymer in 0.1m sodium nitrate
were filtered through 0.45 µm Millipore filters before being passed through a series
of Waters Ultrahydrogel (hydroxylated polymethacrylate based gel) SEM columns
with 250 Å and 2000 Å pore size at a flow rate of 0.8 ml min−1. The SEM columns
separate each solution into components of different molecular weight. The electrolyte
was used to minimise electrostatic interactions that may occur between the solute and
the column surface.

The average molecular weight of polyacrylamide AP30 was measured as 3.1×106±
0.04 with a polydispersity (Mw/Mn) of 1.1± 0.1, while the average molecular weight
for xanthan gum Keltrol is 6.3× 106 ± 0.3 with a polydispersity of 1.2± 0.2.

The low-viscosity Boger fluids were made using a solvent of 76 wt% glycerol–water
and 0.02 wt% sodium azide with either 25, 45 and 75 p.p.m. of polyacrylamide or
25, 45 and 75 p.p.m. of xanthan gum. The solvent was kept constant such that the
polymer had essentially the same conformation for all concentrations. The glycerol was
technical grade (98%), purchased from Ajax Chemicals Pty Ltd, while the deionised
water was obtained from a Millipore Milli-RO

eR4 water purification system which
used 10 and 3 µm pre-filters, a 10 µm carbon filter, and a polyamide reverse osmosis
unit. The water typically had a conductivity of 2–8µS cm−1 and pH ranging from
5.8 to 6.8. All polymer solutions were prepared by first dissolving the appropriate
amount of polymer into deionised water to make a stock solution with a polymer
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Polymer solution Rh(nm) L(nm)

45 p.p.m. PAA 43 —
75 p.p.m. PAA 37 —
45 p.p.m. XG 85 944
75 p.p.m. XG 123 1475

Table 2. PCS measurements of hydrodynamic size of polymers in 76% glycerol.

concentration of 0.1 wt%. The water was warmed to about 30–40 ◦C and the polymer
was added gradually to the water while continually swirling the container in order
to disperse the polymer and avoid agglomeration. Sodium azide was added to the
stock solution (< 0.02 wt%) to act as a biocide. The stock solutions were placed on
a roller mixer device at very low rotation rates for 12–48 h and, once the polymer
was fully dissolved, the solutions were stored in the refrigerator. The experimental
solutions were made by adding the appropriate amounts of polymer stock solution
to the required glycerol and sodium azide with the balance made up with deionised
water. The solutions were then mixed using a four-pronged impeller at low rotation
rates for 8–12 h.

4.2. Molecular properties and solution classification

The hydrodynamic size of each polymer in some of the solutions was determined
using photon correlation spectroscopy (PCS) in a manner similar to that used by Ung
et al. (1997). Further details of the technique and method used is found in Stokes
(1998). The measurements for the hydrodynamic size of polyacrylamide and xanthan
gum for concentrations of 45 p.p.m. and 75 p.p.m. in 76% glycerol–water are shown
in table 2.

The length L of the xanthan gum molecule was determined using relations given
by Broersma (1964) and Young et al. (1978) for rigid rod molecules as follows:

L = Rh

(
2σ − 0.19− 8.24

σ
+

12

σ2

)
, (10)

where σ = ln(L/r) is the aspect ratio of a rod and r is the radius of the ‘rigid rod’. If
r is assumed to be equal to about 2 nm, which is of the same order as that observed
in the literature (Zirnsak 1995), then the length of the xanthan gum molecule ranges
from 944 nm to 1475 nm with an aspect ratio of 472 to 738 for concentrations of
45 p.p.m. and 75 p.p.m., respectively.

The intrinsic viscosity was determined for the set of polyacrylamide and xanthan
gum solutions using viscosity measurements and an automated SCHOTT-GERÄTE
AVS30 intrinsic viscometer using Type 531-10 Ubbelohde viscometer (γ̇w < 40 s−1)
and the viscosity measured using rheometry which will be discussed later. The intrinsic
viscosity in 76% glycerol was 3.7 l g−1 for the polyacrylamide solutions and 8.2 l g−1

for the xanthan gum solutions (Stokes 1998).
The polymer solutions are regarded as dilute when there is no interaction between

molecules. A standard method used to evaluate whether a polymer solution is dilute
is to determine a dimensionless concentration of polymer which can be given by
either [η]c (Flory 1960) or cNAV/Mw (Doi & Edwards 1986) where c is the polymer
concentration, NA is Avogadro’s number, and V is the volume occupied by a polymer
molecule. Flexible polymers tend to occupy a spherical region in solution such that
V = 4

3
πR3

h . In the case of rigid molecules, the spherical region required such that the
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large aspect ratio molecule can freely rotate without interaction with its neighbours
is calculated from the molecule length such that V = 1

6
πL3. The polymer solution is

then regarded as dilute when the dimensionless concentration is less than unity.
The dimensionless concentrations for the 75 p.p.m. polyacrylamide solution were

[η]c = 0.28 and cNAV/Mw = 0.005 and, hence, all the polyacrylamide solutions were
considered truly dilute using both the criteria of Flory (1960) and Doi & Edwards
(1986), respectively. However, for the rigid xanthan gum solution, [η]c = 0.6 while
cNAV/Mw � 1, and hence the two criteria are in conflict. Following the criteria of
Doi & Edwards (1986), the xanthan gum solutions are considered semi-dilute.

4.3. Rheology

Steady shear and dynamic property measurements were made using a Carri-Med
CSL100 rheometer with a 6 cm diameter plate and 1′ 59′′ cone angle, and a Contraves
Low-Shear 40 rheometer equipped with a cup and bob system. The main cup and
bob system used with the Contraves was the MS 41S/1S which consisted of a 5.5 mm
radius bob with an effective length of 8 mm situated in a 6 mm radius cylinder (cup).
The Contraves rheometer, which has a high sensitivity and is designed specifically for
low-viscosity fluids (Tam & Tiu 1989b), was used to measure the properties of the
low-viscosity Boger fluids independently. This was performed by the rheology group
at Nanyang University, Singapore, headed by K. C. Tam. An attempt was made to
measure the primary normal stress difference using a Weissenberg R19 rheometer but
this was found to be too low to measure. An opposed jet apparatus, the Rheometrics
RFX, was used to measure an apparent extensional viscosity.

The Carri-Med rheometer was only capable of measuring the viscosity of the low-
viscosity Boger fluids for shear rates above about 1–2 s−1, below which the viscosity
measurement was unreliable. The Carri-Med results must be treated with some caution
for fluids of low viscosity because it measures a higher viscosity than expected at
low shear rates, even for Newtonian fluids, such that an otherwise constant-viscosity
fluid appears to be shear-thinning (Lee & Sexton 1994; Stokes 1998). The Contraves
rheometer was capable of reliably determining the viscosity of the low-viscosity Boger
fluids for shear rates above 0.1 s−1. The viscosity measured using both rheometers is
shown as a function of shear rate in figures 12(a) and 12(b) for the polyacrylamide
and xanthan gum low-viscosity Boger fluids, respectively, at 20 ◦C. The Carri-Med
results are distinguished by using dotted symbols, and the Newtonian solvent is shown
only as a straight line for clarity. The measurements from the two rheometers overlap
to within a few per cent. Figure 12(a) indicates that each polyacrylamide solution
has a constant viscosity which is such that there is a linear relationship between the
shear stress and shear rate. The behaviour of the xanthan gum solutions, shown in
figure 12(b), indicates the presence of slightly shear-thinning viscosity with a deviation
from a linear shear stress–shear rate relationship. However, for the 75 p.p.m. xanthan
gum solution which was regarded as the most shear-thinning, the zero shear-rate
viscosity was only a factor of two above the infinite shear-rate viscosity and the
slope (power-law exponent) of the shear stress–shear rate curve was only 0.92. The
shear thinning parameter was determined using equation (6) to be β = 0.00014 by
fitting the viscosity data to the master curve of Böhme et al. (1992). Therefore, in
comparison to the fluids used by Böhme et al. (1992), the fluids used in this work can
all be considered to have a constant viscosity. The low shear rate value of viscosity
was used as the viscosity of all solutions and the results are summarized in table 3.

The dynamic properties of the low-viscosity Boger fluids were too low to be reliably
measured using the Carri-Med rheometer (Lee & Sexton 1994; Stokes 1998). However,
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Figure 12. Steady shear properties for (a) the low-viscosity polyacrylamide Boger fluids and (b)
the low-viscosity xanthan gum Boger fluids, using the Contraves LS40 and Carri-Med CSL100
rheometers. Dotted symbols are those measurements obtained from the Carri-Med.

through the use of the Contraves rheometer which has greater sensitivity, the dynamic
properties for the low-viscosity Boger fluids could be measured. The results for the
storage modulus (G′) and dynamic viscosity (η′) as a function of frequency (ω) are
shown in figures 13(a) and 13(b) for the polyacrylamide and xanthan gum Boger
fluids, respectively. The storage modulus for the Newtonian solvent was too low to
reliably measure (Stokes 1998). The dynamic property measurements for the polymer
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Polymer concentration η0 Consistency factor Power law index
(p.p.m.) (mPa s) K(mPa sn) n

Solvent 39.5± 0.5 39.5 1

25 p.p.m. PAA 41± 1 40.7 1
45 p.p.m. PAA 46± 1 43.1 1
75 p.p.m. PAA 50± 1 47.4 1

25 p.p.m. XG 51± 1 47.8 0.9806
45 p.p.m. XG 63± 2 55.1 0.9575
75 p.p.m. XG 95± 5 72.3 0.9151

Table 3. Steady shear measurements for low-viscosity polyacrylamide and xanthan gum Boger

fluids with their corresponding power law parameters indicated such that η = Kγ̇n
−1

.

solutions were more reliable because the fluids contained some degree of elasticity.
However, these measurements for the polymer solutions were also near the limitations
of the instrument, and, in particular, the results for the polyacrylamide Boger fluids
should be treated with some caution since there was only a minor dependence for G′
on polymer concentration. However, different behaviour of the storage modulus with
frequency was measured between the xanthan gum and polyacrylamide solutions,
which was expected owing to their semi-rigid and flexible polymer confirmations,
respectively. Figure 13(a) shows that the storage modulus for the polyacrylamide
Boger fluids has a quadratic dependence on frequency, which is expected for flexible
polymer molecules at low frequencies. The dynamic viscosity, shown in figure 13(a) as
dotted symbols, is similar to the shear viscosity, while the loss modulus is linear with
frequency for the polyacrylamide Boger fluids. In figure 15, the storage modulus for
the xanthan gum solutions are shown to vary linearly with frequency for the highest
concentration (75 p.p.m.) and with ω1.5 at the lowest concentration (25 p.p.m.). The
dynamic viscosities for the xanthan solutions, indicated by dotted symbols in figure
13(b), were similar to the shear viscosities while the loss modulus marginally deviated
from a linear dependency on frequency indicating slight shear-thinning behaviour.
Similar frequency behaviour for the dynamic properties of the fluid used here has
been observed previously at low frequencies for high-viscosity polyacrylamide and
xanthan gum Boger fluids, as reviewed by Zirnsak (1995).

An opposed-jet apparatus, the Rheometrics RFX, was used to measure the be-
haviour of the low-viscosity Boger fluids due to extension. Details of the instrument
and technique are well detailed in previous works by Fuller et al. (1987), Schunk,
DeSantos & Scriven (1990), and Hermansky & Boger (1995). Polyacrylamide and
xanthan gum in glycerol and water mixtures, which are similar to those in this work,
were measured by Fuller et al. (1987). The opposed jet apparatus is not capable of
producing a true uniaxial extensional flow field. The velocity field is not uniform
across the nozzle face and therefore the extension rate is not constant with respect to
radial or axial position such that it is unlikely that steady-state polymer conformations
can be achieved. Therefore, in this case the extensional viscosity can only be regarded
as an estimate and referred to as an apparent extensional viscosity. However, the
opposed jet apparatus is currently the only known commercially available instrument
which can differentiate between a low-viscosity fluid being elastic or inelastic.

The extensional properties, in the form of an apparent Trouton ratio (Tr = ηe/η),
for the low-viscosity polyacrylamide Boger fluids are shown in figure 14(a) using 1 mm
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Figure 13. Linear viscoelastic properties for (a) the low-viscosity polyacrylamide Boger fluids and
(b) the low-viscosity xanthan gum Boger fluids, using the Contraves LS40 rheometer showing the
storage modulus G′ and dynamic viscosity η′ (dotted symbols).

diameter nozzles. The opposed jet apparatus was only capable of measuring a Trouton
ratio of Tr ≈ 4 for the Newtonian solvent, and not the value of Tr = 3 expected
for a Newtonian fluid in a true uniaxial extensional flow field. The apparent Trouton
ratio for the polyacrylamide Boger fluids is initially at a value of Tr ≈ 4 at low
extension rates and then it increases to a maximum at extension rates of ε̇ ≈ 1000 s−1,
after which the Trouton ratio decreases. The mechanisms for the apparent decrease



Swirling flow of viscoelastic fluids. Part 1 93

(a)

100

10 100 1000 10000

A
pp

ar
en

t T
ro

ut
on

 r
at

io
, T

r
=

g e
/g

Solvent (76% glycerol)

80

60

40

20

0

25 p.p.m. PAA
45 p.p.m. PAA
75 p.p.m. PAA

(b)

14

10 100 1000 10000
Apparent extension rate (s–1)

A
pp

ar
en

t T
ro

ut
on

 r
at

io
, T

r
=

g e/
g 0

Solvent (76% glycerol)

12

8

6

4

0

25 p.p.m. XG

45 p.p.m. XG

75 p.p.m. XG

10

2

Figure 14. Extensional viscosity measurements using the Rheometrics RFX for (a) low-viscosity
polyacrylamide Boger fluids and (b) for low-viscosity xanthan gum Boger fluids, and shown as an
apparent Trouton ratio.

at high rates has not been well established, but may be associated with the polymer
not having sufficient time to extend in the flow field, or it may be due to a flow
instability. The general behaviour of the polyacrylamide solutions is that they are all
extension rate thickening, which is a general characteristic for flexible polymers. The
extension rate thickening behaviour was consistent across all concentrations, and may
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Fluid η0 Ke ne Maximum
(Pa s) (Pa s′′) Tr

Solvent 0.0395 0.16 1 4.05

25 p.p.m. PAA 0.041 0.0794 1.32 12
45 p.p.m. PAA 0.046 0.162 1.32 30
75 p.p.m. PAA 0.050 0.447 1.32 72

25 p.p.m. XG 0.051 0.265 1 6.1
45 p.p.m. XG 0.063 0.57 1 9.0
75 p.p.m. XG 0.095 1.11 1 12

Table 4. Extensional viscosity measurements for low-viscosity polyacrylamide and xanthan gum

Boger fluids for 10 < ε̇ < 1000 s−1 with the power law parameters indicated such that: ηe = Keε̇
ne−1

.

be expressed using a power law model. A summary of the extensional behaviour of
polyacrylamide Boger fluids is indicated in table 4.

The apparent Trouton ratio for the xanthan gum Boger fluids is shown in figure
14(b) and is relatively constant for extension rates below ε̇ ≈ 1000 s−1, with a summary
of the results indicated in table 4. The area of constant extensional viscosity is
characteristic of rigid or semi-rigid macromolecules and with perfectly aligned rigid
rods. Large-aspect-ratio macromolecules and rigid rods align instantaneously with
the flow field, even at relatively low extension rates, such that the extensional viscosity
is relatively independent of extension rate. The xanthan gum solutions, however,
show extension rate thinning behaviour at high extension rates (̇ε > 1000 s−1) which
is similar to that observed for the polyacrylamide solutions. This decrease may mean
that either the macromolecules do not have enough time to align in the flow field
or there is a flow instability. At extreme extension rates, the apparent Trouton ratio
rises again, but this is likely to be due to the anomalies in the instrument discussed
previously.

The density was measured for the Newtonian solvent and polymer solutions using
25 ml calibrated density flasks and was determined to be ρ = 1196± 2 kg m−3 at 20 ◦C
for all solutions.

4.4. Constitutive model parameters

The polymer relaxation time for several molecular constitutive theories may be
estimated using the intrinsic viscosity (see Bird et al. 1987b). For example, the Oldroyd-
B constitutive equation, which is suitable to use for the flexible polymers and hence
for the polyacrylamide solutions, may be derived from the elastic dumbbell model
with the following relation used to determine the longest relaxation time (λ1):

λ1 =
[η]ηsMw

RgT
(11)

where ηs is the solvent viscosity (Pa s), Rg is the universal gas constant (8.314 J K−1

mol−1), and T is the temperature (K). The retardation time (λ2) in the Oldroyd-B
model is given by λ2 = λ1(ηs/η0). The relaxation time in the Maxwell constitutive
model (λM) is related to the Oldroyd characteristic times by: λM = λ1 − λ2. The
longest Rouse and Zimm model relaxation times may also be determined, because
the polymer solutions are dilute, by multiplying the Oldroyd-B relaxation time by
the factors 6π2 and 0.423π2, respectively. Therefore, characteristic relaxation times
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Concentration η0 λ1 or λD λ2 λM El
of polymer (mPa s) (s) (s) (s)

Solvent 39.5 — — — —

25 p.p.m. PAA 41 0.186 0.179 0.007 49× 10−6

45 p.p.m. PAA 46 0.186 0.160 0.026 204× 10−6

75 p.p.m. PAA 50 0.186 0.147 0.039 332× 10−6

25 p.p.m. XG 51 0.838 — 0.19 1.65× 10−3

45 p.p.m. XG 63 0.838 — 0.31 3.33× 10−3

75 p.p.m. XG 95 0.838 — 0.58 9.4× 10−3

Table 5. Estimated material properties for the low-viscosity polyacrylamide and xanthan gum
Boger fluids.

have been obtained for four constitutive models which are used to describe flexible
molecules without the need for measurement of the primary normal stress difference
or storage modulus. The viscosity, Oldroyd-B relaxation and retardation times, the
Maxwell relaxation time, and the elasticity number are shown for the low-viscosity
polyacrylamide Boger fluids in table 5. The Maxwell relaxation time is used as
the characteristic time of the fluid when evaluating the Weissenberg and elasticity
numbers for the fluids used in the torsionally driven cavity.

The validity of using the aforementioned models is demonstrated by predicting the
linear viscoelastic properties using the relaxation times calculated from the intrinsic
viscosity. A comparison between the predicted and measured reduced storage modulus
(G′R = G′Mw/cRgT ) is shown in figure 15(a) as a function of the reduced frequency
(ωR = ωλ1). Only the values predicted for the 75 p.p.m. polyacrylamide solution are
shown for clarity with the other concentrations behaving in a very similar manner.
A prediction is also shown for the Rouse and Zimm models using data provided by
Ferry (1980). All of the aforementioned models were able to predict the measured G′R
accurately at medium values of ωR . The measured G′R deviates at low ωR because the
measurements are near the limitations of the rheometer. The Oldroyd-B, Rouse and
Zimm models fail to predict G′R at high ωR whereas the Maxwell model performed
well across the whole range of ωR . Therefore, the storage modulus for the low-viscosity
polyacrylamide Boger fluids has been accurately predicted using the relaxation time
calculated from intrinsic viscosity measurements.

An attempt was made to predict the extensional viscosity measurements using
the Oldroyd-B and Maxwell models. The models both predict strain rate thickening
behaviour, which is observed experimentally, but the predicted extensional viscosity
asymptotes to infinity when ε̇ = 1/(2λ). The critical extension rate is therefore 2.7 s−1

and 13 s−1 for the Oldroyd-B and Maxwell model, respectively, for the 75 p.p.m.
polyacrylamide Boger fluid, and therefore the models are incapable of describing the
apparent extensional viscosity measured for the polyacrylamide solutions using the
opposed jet apparatus. It also highlights the need to use these models only for flows
where strain rates are low such that the extensional viscosity is finite.

The rigid-dumbbell constitutive model (see Bird et al. 1987b) may be used to de-
scribe rigid or semi-rigid molecules in solution and, hence, was considered appropriate
to use for the xanthan gum solutions. The rigid-dumbbell model may use the same
relation for the relaxation time (λD) as that for the elastic dumbbell model, i.e. λD = λ1

where λ1 is given by (12). The rigid dumbbell relaxation time is displayed in table 5
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Figure 15. Comparison between the measured reduced storage modulus G′R for (a) low-viscosity
polyacrylamide Boger fluids and that predicted using selected constitutive models, and (b) the
low-viscosity xanthan gum Boger fluids and that predicted using the rigid-dumbbell constitutive
model; the relaxation time was calculated from intrinsic viscosity measurement.

for the xanthan gum solutions along with the corresponding Maxwell relaxation time,
which was calculated in the same fashion as for the polyacrylamide Boger fluids.

The validity of using a rigid-dumbbell model to describe the low-viscosity xanthan
gum Boger fluids was tested by comparing the measured values of G′R with those
predicted in figure 15(b). No concentration dependence for G′R was predicted using
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Concentration of xanthan η0 ηe ηe (RD) ηe (RR)
gum (p.p.m.) (mPa s) (mPa s) (mPa s) (mPa s)

0 39.5 160 119 119
25 51 310 486 136
45 63 570 778 157
75 95 1110 1221 174

Table 6. Comparison of the apparent extensional viscosity measurements for the xanthan gum
Boger fluids and those predicted from the rigid-dumbbell model (RD) of Bird et al. (1987b) and
Batchelor’s (1971) theory for semi-dilute perfectly aligned Rigid Rods (RR).

the rigid-dumbbell model. Very good agreement is found between the measured and
the predicted G′R , particularly at low concentrations of xanthan. As the concentration
was increased, the measured G′R deviates from those predicted as the slope of the
measured G′R-ωR curve decreases. Therefore, deviation of the model from the actual
measurements may be associated with a departure of the fluids from being a dilute
solution such that as the concentration is raised there is increased interaction between
molecules. At high frequency, the rigid-dumbbell model predicts a constant G′R which
is not observed experimentally.

The rigid-dumbbell model of Bird et al. (1987b) and Batchelor’s theory for per-
fectly aligned rigid rods (Batchelor 1970, 1971), were used to predict the extensional
behaviour of xanthan gum. The results (table 6) show that the rigid-dumbbell model
predictions are in reasonable agreement with the measured extensional viscosity and,
hence, the model is suitable for the description of the xanthan gum in extension.

In conclusion, the rheological properties of the low-viscosity Boger fluids used in
this study can be predicted to within an order of magnitude of the experimental
measurements using simple constitutive models such as the Oldroyd-B and rigid-
dumbbell models. These models were considered reasonably accurate, considering
that the fluids had a low viscosity and low elasticity. These constitutive models are
therefore recommended for future analytical studies on the torsionally driven cavity
flow of the viscoelastic fluids used in this work.

5. Results
Section 5.1 presents the results obtained using flow visualization and PIV for the

test fluids comprised of 75 p.p.m. or less of polyacrylamide or xanthan gum polymer
dissolved in a Newtonian 76% glycerol–water solvent. All fluids have an essentially
constant viscosity such that the observed differences in flow behaviour from the
Newtonian case are attributed to fluid elasticity associated with the presence of
either the highly flexible polyacrylamide or the high-aspect-ratio rigid xanthan gum
macromolecules. Flow-visualization images using fluorescent dye are initially shown
for the 45 p.p.m. polyacrylamide solution for three sets of cylinder aspect ratios.
Section 5.2 examines the effect of polymer, and hence elasticity, on the existence
domain for vortex breakdown. Velocity measurements are shown in § 5.3 to assist in
the establishment of the possible reasons for a change in the flow behaviour which
results from fluid elasticity and to provide quantitative data suitable for comparison
with numerical studies.



98 J. R. Stokes, L. J. W. Graham, N. J. Lawson and D. V. Boger

(a) (b) (c) (d )

(e) ( f )

Figure 16. Flow visualization images for 45 p.p.m. polyacrylamide Boger fluid at H/R = 2.5 for
(a) Re = 2015, We = 0.41, (b) Re = 2297, We = 0.47, (c) Re = 2373, We = 0.48, (d) Re = 2443,
We = 0.50, (e) Re = 2636, We = 0.54, (f) Re = 2922, We = 0.6.

5.1. Flow visualization

The flow visualization secondary flow patterns for 45 p.p.m. polyacrylamide are illus-
trated in figures 16, 17, and 18 for aspect ratios (H/R) of 2.5, 2, and 1.5, respectively.
Only the central portion of the secondary flow cell is shown, with corresponding
dimensions of 83.9 × 175 mm2, 69.2 × 140 mm2, and 50.6 × 105 mm2 for a H/R of
2.5, 2 and 1.5, respectively, to illustrate the changing structure of the vortex core as
breakdown occurs. The flow structures presented are visually similar to those ob-
served and described by Escudier (1984) for a Newtonian liquid although the critical
conditions for the occurrence of breakdown are altered owing to the influence of
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Figure 17. Flow visualization images for 45 p.p.m. polyacrylamide Boger fluid at H/R = 2 for
(a) Re = 1059, We = 0.22, (b) Re = 1686, We = 0.34, (c) Re = 1760, We = 0.36, (d) Re = 1974,
We = 0.40, (e) Re = 3245, We = 0.66, (f) Re = 3442, We = 0.70 (g) Re = 3625, We = 0.74.

elasticity. The secondary flow for the polymer solution is also in the same direction
as for a Newtonian fluid.

Figure 16 illustrates the secondary flow patterns for 45 p.p.m. polyacrylamide at an
aspect ratio of H/R = 2.5. At low Reynolds numbers, a straight line of dye flows
down the centreline into the Ekman boundary layer and is recirculated outwards
along the rotating disk, up the sidewalls, along the stationary lid and down the
central vortex core once again. However, as the Reynolds number is increased to
Re = 2015 (figure 16a), wavy dye streak lines are observed around the centreline, and
what appears like a spiral on the centreline. A spiral of dye is usually observed at
Reynolds numbers just below those required to cause breakdown and is an artefact
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of flow visualization, and, therefore, should not be confused with an asymmetry in the
flow (Hourigan, Graham & Thompson 1996). A stagnation point in produced upon
increasing the Reynolds number to Re = 2300 (figure 16b) which is an indicator of
the incipient breakdown state. The stagnation point moves upstream once breakdown
takes place and an adverse pressure gradient causes the production of a weakly
flowing recirculation zone between two stagnation points. A single vortex breakdown
bubble is clearly visible at a Reynolds number of Re = 2375 (figure 16c). The flow
can also be observed to decelerate just downstream from the bubble where a build-up
of dye is shown. On subsequent increases in Reynolds number, another stagnation
point occurs with the production of a second breakdown bubble, as shown for a
Reynolds number of Re = 2445 (figure 16d). Further increases in Reynolds number
lead to increases in bubble size and a shift of the second bubble upstream towards
the stationary lid, as shown in figure 16(e) and 16(f).

Figures 17 and 18 show the progress of the occurrence of a single vortex breakdown
bubble for H/R = 2 and H/R = 1.5, respectively, for 45 p.p.m. polyacrylamide. At
H/R = 2, no second vortex breakdown bubble is observed using 45 p.p.m. polyacry-
lamide, although the second vortex breakdown bubble is observed for a Newtonian
fluid. In both figures 17 and 18, the single breakdown bubble is observed to grow in
size initially and then change shape as the Reynolds number is increased. Figure 17(e)
and figure 18(c) show a flattening out of the bubble downstream near the stagnation
point. As the Reynolds number is increased further, the stagnation point rises and
ultimately vortex breakdown disappears, as shown in figure 17(g).

5.2. Existence domain of vortex breakdown

The steady-state existence domain of vortex breakdown, in terms of Reynolds number
and aspect ratio, for the polyacrylamide and xanthan gum Boger fluids are shown in
figures 19 and 20, respectively, at polymer concentrations of 0, 25 and 45 p.p.m. The
solid lines in the diagrams represent the existence domain for the single upstream
vortex breakdown bubble while the dashed lines represent the existence domain of
the second vortex breakdown bubble. Upon increasing the rotation speed of the disk,
the flow can become unsteady initially, but then return to a stable flow field after
waiting several minutes. Therefore, it is difficult ascertaining the unsteady regime
observed by Escudier (1984) for Newtonian fluids (see figure 3). Also, when a high
disk rotation rate is maintained, severe viscous heating occurs where the temperature
can increase by more than 1 ◦C after only a couple of minutes, which subsequently
causes the material properties to be altered. Therefore, the unsteady regime is not
examined in the present work owing to the difficulties in ascertaining its existence
domain combined with the adverse effects associated with viscous heating. The flow
field beyond the upper limit of vortex breakdown is also not examined.

There is a shift in the existence domain of vortex breakdown for the polyacrylamide
solutions to higher Reynolds number and aspect ratios owing to the influence of
elasticity upon addition of flexible polymer to the Newtonian solvent. Figure 19
indicates that the degree of shift in the vortex breakdown is found to increase
with polyacrylamide concentration. A greater Reynolds number is required for the
appearance and disappearance of the first and second recirculation bubbles, at a
constant aspect ratio, for the polyacrylamide solutions when compared to a Newtonian
fluid. In the case of the 45 p.p.m. polyacrylamide Boger fluid, the critical Reynolds
number required for breakdown is 20% larger than that required for a Newtonian
fluid. Also, the minimum critical aspect ratio, below which vortex breakdown is not
observed, increases with polyacrylamide concentration. In the case of the 45 p.p.m.
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polyacrylamide Boger fluid when compared to the Newtonian solvent, the minimum
critical aspect ratio for the first breakdown bubble increases by approximately 20%.
However, the minimum critical aspect ratio for the second breakdown bubble increases
by about the same absolute magnitude as that for the first breakdown bubble. The
upper domain curves, where the single vortex breakdown bubble disappears, for each
polyacrylamide concentration merge to a common curve and are offset at greater
Reynolds numbers than for the Newtonian fluid. Vortex breakdown is not observed
at all for 75 p.p.m. polyacrylamide for aspect ratios below H/R = 2.8.

The vortex breakdown existence domain is also altered by semi-rigid xanthan
gum as shown for polymer concentrations of 25 and 45 p.p.m. in figure 20. The
area bounded by the vortex breakdown domain curves decreases with increasing
xanthan concentration and no second breakdown bubble is observed at aspect ratios
below H/R = 2.5 for the 45 p.p.m. xanthan gum. There is only a slight increase
in the Reynolds numbers corresponding to the formation of the first breakdown
bubble and a decrease in the Reynolds numbers corresponding to the disappearance
of the first and second breakdown bubble with increasing xanthan concentration.
This corresponds to about a 25% decrease in Reynolds numbers required for the
disappearance of the first breakdown bubble for the 45 p.p.m. xanthan gum Boger
fluid. There is also a small shift (≈ 5%) to higher Reynolds numbers for the occurrence
of the second breakdown bubble for the 25 p.p.m. xanthan gum Boger fluid. The
xanthan gum also causes the minimum critical aspect ratio required for breakdown
to increase with polymer concentration to a high as about 40% for the 45 p.p.m.
xanthan gum solution. Vortex breakdown is not observed for aspect ratios of less
than H/R = 2.8 for 75 p.p.m. xathan gum.

It should be noted that the xanthan gum solutions are slightly shear-thinning above
shear rates of γ̇ ≈ 1–10 s−1, while the Reynolds number is based on the zero shear-
rate viscosity. For the overall flow kinematics, the degree of shear-thinning for the
xanthan solutions is considered negligible when it is compared to the highly shear-
thinning fluids of Böhme et al. (1992). The shear-thinning parameter for the 75 p.p.m.
xanthan gum Boger fluid is β = 0.00014, whereas for the fluids of Böhme et al. (1992),
β > 0.13. The major effect of shear-thinning in the experiments of Böhme et al. (1992)
was to increase the minimum critical aspect ratio required for breakdown. Therefore,
with values of the shear-thinning parameters close to zero, the slight shear-thinning
behaviour of the xanthan gum Boger fluids will have no effect on the minimum
critical aspect ratio required for breakdown. Hence, the only effect of the slight shear-
thinning behaviour of the xanthan gum solutions is the difficulty associated with
defining a viscosity to use in the Reynolds number. By defining the viscosity as the
zero shear-rate value, the Reynolds number will be underestimated, considering that
the flow kinematics are governed by shear rates above γ̇ ≈ 1 s−1 since the rotation
rate of the disk is generally greater than Ω ≈ 1 s−1. If a lower viscosity is used to
define the Reynolds number for the xanthan solutions, then the Reynolds number
will be larger than those reported here. This causes the vortex breakdown domain
curves for the xanthan gum solutions to be shifted to higher Reynolds numbers and
therefore be similar to the domain curves for the polyacrylamide Boger fluids.

5.3. Velocity measurements

Particle image velocimetry has been used to determine the axial and radial velocity
field in the secondary flow plane for the Newtonian solvent and the 45 and 75 p.p.m.
polyacrylamide and xanthan gum Boger fluids. A typical vector field and sectional
streamline plot for the 75 p.p.m. polyacrylamide Boger fluid is shown in figure 10
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(a) (b) (c) (d )

Figure 18. Flow visualization images for 45 p.p.m. polyacrylamide Boger fluid at H/R = 1.5 for
(a) Re = 1403, We = 0.29, (b) Re = 1574, We = 0.32, (c) Re = 1808, We = 0.37, (d) Re = 1959,
We = 0.40.

for the case of a Reynolds number of Re = 2100 and an aspect ratio of H/R = 2.
At these conditions, vortex breakdown is observed for a Newtonian fluid but it is
suppressed for the 75 p.p.m. polyacrylamide Boger fluid. The axial and radial velocity
profiles are shown in figure 21 as contour plots where solid lines indicate a positive
velocity while dashed lines indicate a negative velocity noting that the origin is located
at the centre of the rotating disk. The velocity is constant along a contour line with
the absolute velocity given alongside the diagrams.

The secondary flow for the 75 p.p.m. polyacrylamide Boger fluid is examined using
the vector plot and velocity contour diagrams in figures 10 and 21, respectively.
Starting from the origin in the middle of the rotating disk, fluid is quickly pumped
outwards along the disk to the stationary sidewalls. The radial velocity (figure 21b)
shown in the region closest to the disk is difficult to visualize, and, therefore, the
velocity in this region is high in error, as discussed in § 3.4. Fluid then flows upward
along the stationary sidewall, with a peak in velocity of around −32 mm s−1 (figure
21a), before turning inwards as it encounters the top stationary lid. The fluid then
flows inwards along the stationary lid with a similar radial velocity to that present
along the rotating disk (figure 21b). The fluid then flows down the central region
where it passes through a peak in the axial velocity of more than 32 mm s−1 at a
height of z = 120 mm for a radius of r = ±15 mm s−1 (figure 21a). The fluid then slows
down as it moves down the central axis to a region of almost constant axial velocity
for z < 100 mm with −12 < Vz < −16 mm s−1 before passing through another small
peak at z ≈ 15 mm. The flow along the central core region is dominated by the axial
velocity with only small radial fluctuations indicated at z ≈ 100 mm, which results
from the divergence of the streamlines (figures 10 and 21b).

A contour diagram of the azimuthal component of vorticity is shown in figure 21(c)
with a positive vorticity indicated as that directed into the page. In the left-hand half
of figure 21(c), there is an area of negative azimuthal vorticity near the central axis
which, according to Lopez (1990), is a necessary condition for vortex breakdown to
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Figure 19. Existence domain for vortex breakdown of low-viscosity polyacrylamide Boger fluids
and the Newtonian solvent (76% glycerol). Solid line and filled symbols: 1 breakdown. Dashed line,
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Figure 21 (a, b). For caption see facing page.

occur. The streamlines and vector plot in figure 10 indicate that the streamlines have
a concave form, which is also considered a necessary condition before breakdown
occurs. Yet, vortex breakdown is not observed at any Reynolds number at this aspect
ratio for the 75 p.p.m. polyacrylamide Boger fluid which suggests that although the
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Figure 21. Flow field for 75 p.p.m. polyacrylamide Boger fluid at Re = 2100, We = 0.7, and H/R = 2
showing (a) axial velocity distribution, (b) radial velocity distribution, (c) azimuthal component of
vorticity. Refer to figure 10 for corresponding vector field.

criteria of Lopez (1990) may be a necessary condition required for breakdown to
occur, a negative azimuthal vorticity in the central core does not necessarily indicate
that breakdown will occur.

The axial velocity close to the central axis where −5 mm < r < 5 mm is determined
for each fluid, at various Reynolds numbers before and after breakdown, with the
results shown for an aspect ratio of H/R = 2 in figures 22(a)–22(e). The axial velocity
is shown in dimensionless form by dividing by the maximum azimuthal velocity which
corresponds to that produced at the edge of the rotating disk (2πRΩ). Lines shown
on the diagrams represent lines which best fit the data. The rotating disk corresponds
to z = 0 such that a negative axial velocity indicates the fluid flowing towards the
rotating disk.

The axial velocity distribution for the Newtonian fluid at an aspect ratio of
H/R = 2 in figure 22(a) is used to describe the axial flow profiles. Note that the
first and second breakdown bubble occur for a Newtonian fluid with an aspect ratio
of H/R = 2 at Re ≈ 1450 and Re ≈ 1800, respectively, with the second bubble
disappearing at Re ≈ 2300. No bubble is observed at all above Re ≈ 3000. The axial
velocity distribution initially has a minimum velocity just above the rotating lid at
low Reynolds number with a narrow axial velocity distribution. As the Reynolds
number is raised to Re = 380, the axial velocity distribution becomes broader and
the minimum moves to a position further away from the rotating disk. At Reynolds
numbers of Re > 990, the minimum axial velocity moves closer to the stationary
disk and the magnitude in velocity just above the rotating disk is low. The axial
velocity distribution becomes a narrow peak (1.1 < z/R < 2) with the minimum
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Figure 22. Dimensionless axial velocity measurements along centreline (r ≈ 0) for (a) Newtonian
solvent (76% glycerol), (b) 45 p.p.m. polyacrylamide Boger fluid where El = 49× 10−6, (c) 45 p.p.m.
xanthan gum Boger fluid where El = 3.33 × 10−3, (d) 75 p.p.m. polyacrylamide Boger fluid where
El = 332× 10−6, (e) 75 p.p.m. xanthan gum Boger fluid where El = 9.4× 10−3. H/R = 2.0.

close to the stationary lid as the Reynolds number is raised to Re = 1290. This peak
corresponds to the stage just prior to breakdown. The velocity near the rotating lid
is small in magnitude with a flat distribution governing a majority of the axial length
(z/R < 1.1). This low velocity or almost stagnant region continues to migrate to a
higher axial length until a stagnation point arises and a small region of flow reversal
occurs which indicates the occurrence of vortex breakdown. This vortex breakdown
is shown for Re = 1510 where a positive velocity is indicated at z/R = 1.3. Above
z/R = 1.3, the axial velocity peak has become narrower and the magnitude of the
minimum axial velocity has decreased slightly from its value prior to breakdown. Two
breakdown bubbles are observed at higher Reynolds numbers such as in the case of
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Re = 2144 and the magnitude of the minimum axial velocity is less than about half
of that prior to breakdown.

The progression of the axial velocity distribution for 45 p.p.m. polyacrylamide and
45 p.p.m. xanthan gum Boger fluids are very similar to those of the Newtonian solvent
with the measurements shown in figures 22(b) and 22(c), respectively. As previously
mentioned, vortex breakdown occurs at larger Reynolds numbers for the 45 p.p.m.
polyacrylamide Boger fluids than for the Newtonian solvent and this is reflected
in the velocity profiles. At the same Reynolds number, the velocity profile for the
polyacrylamide solution is less developed than that for the Newtonian fluid such that
to obtain a similar velocity distribution, a higher Reynolds number is required for
the polyacrylamide Boger fluid. A similar Reynolds number is required for vortex
breakdown of the xanthan gum solution compared with the Newtonian solvent which
is also reflected by similar velocity profiles at similar Reynolds numbers in the two
cases. However, the most significant difference in the axial velocity profiles is that the
minimum velocity for both the 45 p.p.m. polymer Boger fluids is lower in magnitude
than for the Newtonian solvent. Prior to breakdown, the minimum velocity for the
Newtonian fluids is approximately a constant of value of Vz/(2πRΩ) ≈ −0.11 for
380 < Re < 1290 and seemingly independent of aspect ratio for 1.5 < H/R < 2.5.
However, in comparison to the Newtonian fluid, the minimum velocities were 13%
and 27% lower with values of Vz/(2πRΩ) ≈ −0.096 and Vz/(2πRΩ) ≈ −0.08 for
the 45 p.p.m. polyacrylamide and 45 p.p.m. xanthan gum Boger fluids, respectively,
prior to breakdown. This decrease in magnitude of the minimum velocity correlates
with the 20% and 40% increase in the minimum aspect ratio required for vortex
breakdown to occur for the 45 p.p.m. polyacrylamide and 75 p.p.m. xanthan gum
Boger fluids, respectively. As displayed in the existence domain plots in figures 19
and 20, the minimum aspect ratios for the Newtonian, 45 p.p.m. polyacrylamide
and 45 p.p.m. xanthan gum Boger fluids was about 1.25, 1.5 and 1.75, respectively.
Therefore, the results indicate that there is a strong connection between the magnitude
of the minimum velocity and the minimum aspect ratio required for breakdown to
occur.

Vortex breakdown does not occur for the 75 p.p.m. polyacrylamide or 75 p.p.m.
xanthan gum Boger fluids for aspect ratios equal to or less than H/R = 2.8. The
velocity distributions for these two Boger fluids are shown in figures 22(d) and 22(e),
respectively. While showing a similar progression to the velocity profiles for the
Newtonian solvent, the Boger fluids in this case do not reach very low minimum axial
velocities and the velocity distributions are flatter when compared to the previous
cases. There is no longer a sharp peak in the axial velocity at Reynolds numbers where
vortex breakdown would occur for the Newtonian fluid. At Reynolds numbers of
Re ≈ 1500–1600, the velocity distribution for the Newtonian fluid (figure 22a) passes
through a sharp minimum at z/R ≈ 1.7 to Vz/(2πRΩ) ≈ −0.084 before increasing
to a positive value in the location of the breakdown bubble at z/R ≈ 1.3. However,
the velocity distributions for the polyacrylamide (figure 22d) and xanthan (figure
22e) Boger fluids do not have a sharp minimum peak and the minimum velocities
are 67% and 86% lower in magnitude than for the Newtonian case. For Re ≈
1500–1600, the minimum axial velocity for the polyacrylamide Boger fluid was only
Vz/(2πRΩ) ≈ −0.028 at an aspect ratio of z/R ≈ 1.3, while the minimum velocity
for the xanthan gum Boger fluid is only Vz/(2πRΩ) ≈ −0.012 at an aspect ratio of
z/R ≈ 1.975. Therefore, the results suggest that the total suppression of breakdown
for these two Boger fluids is due to the reduced magnitude of the peak axial velocity
which has been caused by the action of elasticity.
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Figure 23. Flow field for 75 p.p.m. polyacrylamide Boger fluid at Re = 2100, We = 0.7, and H/R = 2
showing the following components of the rate-of-strain tensor (a) γ̇rr and (b) γ̇zz . Refer to figures
10 and 26 for corresponding vector field and velocity distributions, respectively.
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6. Discussion

The confined swirling flow has been dramatically affected owing to the addition
of dilute and semi-dilute concentrations of high molecular weight polymers of both
flexible and semi-rigid conformation, respectively, to a Newtonian solvent. The critical
aspect ratio for the occurrence of vortex breakdown is shifted to greater values as
the concentration of the polymer was increased. Vortex breakdown is not observed
using 75 p.p.m. of polyacrylamide or 75 p.p.m. xanthan gum for the aspect ratios
examined (H/R < 2.8). Velocity measurements have indicated that the shift in the
critical aspect ratio and ultimate suppression of breakdown has arisen because of the
lowering of the maximum magnitude of the dimensionless axial velocity along the
centreline (r ≈ 0). The mechanisms by which elasticity has affected the axial velocity
and the suppression of vortex breakdown is now discussed in more detail.

Normal stresses induced in flow arise as a result of fluid elasticity. In swirling flow,
normal stresses cause a tension along curvilinear streamlines with a resultant force
acting inwards, against the outward normal of these curved streamlines and in the
opposite direction to inertial forces. Although the primary normal stress difference
is not measurable for the low-viscosity Boger fluids, it may be estimated from the
storage modulus using the relation:

Limγ→0NI/2γ̇
2 ≡ Limω→0G

′/ω2

(see Bird et al. 1987a). Therefore, the radial velocity in the governing boundary layer
positioned on the rotating disk, which drives the whole secondary flow, is reduced
by the action of normal stresses. A slight reduction in the radial velocity out of
the governing boundary layer will result in a lower axial velocity down the cen-
treline out of the boundary layer located on the stationary top lid. The waviness
observed in the sectional streamlines prior to breakdown (figure 2b) results from
inertial fluctuations referred to as inertial waves. These inertial waves are considered
critical for the occurrence of breakdown, and their degree of waviness is controlled
by the upstream axial velocity. A decrease in the axial velocity magnitude from the
stationary lid therefore leads to a reduction and suppression of the degree of the wavi-
ness in the sectional streamlines and subsequently hinders the occurrence of vortex
breakdown.

Extensional effects often play a role in phenomena associated with viscoelastic flu-
ids, such as in drag reduction where extensional viscosity is associated as the cause in
the reduction of turbulence through the suppression of eddy formation. It is, therefore,
expected that extensional viscosity will play a role in the suppression of vortex break-
down. The apparent Trouton ratio for the Boger fluids was significantly greater than
the Newtonian Trouton ratio of Tr = 3, as shown in § 4.3. The polyacrylamide Boger
fluids are strain rate thickening while the extensional viscosity of the xanthan gum
Boger fluids is constant with strain rate. Therefore, at even small extension rates, the
resistance to extension from the xanthan gum Boger fluids is higher than for Newton-
ian fluids and this will have an effect on the flow kinematics. For the polyacrylamide
Boger fluid, reasonable extension rates are required for the extensional viscosity to
be above the Newtonian value owing to its strain rate thickening behaviour. Figure
23 shows two components of the rate-of-strain tensor in the secondary flow plane,
namely γ̇rr and γ̇zz , for the 75 p.p.m. polyacrylamide Boger fluid at Re = 2100. Dashed
lines represent areas of negative strain rate (compressive) and solid lines represent
areas of positive strain rate (extension). The areas of highest extension are situated
just below the stationary lid with γ̇zz ≈ 3.4 s−1 and along the stationary walls from the
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corner of the rotating disk where z < 50 mm with γ̇zz ≈ 2.2 s−1. These areas will show
the highest resistance to extension in the secondary flow field for the polyacrylamide
Boger fluids. The greater resistance to extension for the Boger fluids when compared
to Newtonian fluids will result in a lowering of the velocity in areas of high extension
rate. In particular, the minimum velocity along the centreline would be suppressed, as
observed in the velocity profiles for 75 p.p.m. polyacrylamide and 75 p.p.m. xanthan
gum Boger fluids in figures 22(d) and 22(e).

It is clear that even a small degree of elasticity can change the character of a swirling
flow field dramatically, even when it is dominated by inertial forces. Predictions of the
flow of non-Newtonian fluids are limited, including when inertia is negligible or when
inertial effects are high, such as in turbulent or swirling flows. The experiments in this
paper were carried out to provide experimental observations and quantitative data
in a well-defined flow field, using well-characterized fluids, in order to examine the
effect of elasticity on an established steady flow phenomenon observed for Newtonian
fluids. As reviewed previously, inertia is the dominant force governing the flow, and,
hence, the confined swirling flow experiment has demonstrated a suitable test case for
validation of non-Newtonian constitutive models. This validation process is a prelude
to predicting other inertia-dominated flows such as those encountered in mixing
processes and drag reduction. Part 2 will examine the secondary flow field, as inertia
is gradually removed from the problem and the flow becomes heavily dominated by
elastic forces.

7. Conclusion
The secondary flow of low-viscosity dilute polyacrylamide and xanthan gum solu-

tions has been significantly altered when compared to a Newtonian solution of similar
constant viscosity. When compared to observations in the confined swirling flow of
Newtonian fluids, the critical aspect ratio for the occurrence of vortex breakdown
has been shifted to greater values with increasing polymer concentration such that
breakdown was not observed at all for concentrations of 75 p.p.m. polyacrylamide or
75 p.p.m. xanthan gum at aspect ratios under H/R = 2.8. The existence of breakdown
for any particular aspect ratio is critically dependent on the axial velocity distribution
and the peak velocity near the axis of symmetry. The existence domain for break-
down has also shifted to greater values of critical Reynolds number when using 25
and 45 p.p.m. polyacrylamide, while the domain for xanthan was considerably more
narrow than for a Newtonian fluid. The results indicate the effect of even a small
amount of elasticity in inertia-dominated swirling flows. The provision of radial and
axial velocity measurements in the secondary flow field, combined with the analysis
of the alteration of the existence domain for vortex breakdown due to fluid elasticity,
yields a comprehensive database for comparison with numerical solutions of the flow
field.
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Böhme, G., Voss, R. & Warnecke, W. 1985 Die frei oberfläche einer flüssigkeit über einer rotierenden
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